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SUMMARY 

We describe in this paper some new methods for solving the shallow water flow problem; this problem is 
composed of two coupled non-linear equations. First a fractional step method is used to decouple the 
dificulties due to the convection and the propagation. The diffusion propagation step amounts to solving two 
coupled linear equations on the water depth and the fluxes. We used then some quasi-direct decomposition 
techniques to decouple the unknowns, leading to symmetric systems only. In addition some non-trivial 
boundary conditions on the flux are examined. Particularly we are interested to get decoupled systems on the 
two components of the flux. Numerical tests are presented to enlighten the behaviour and the capabilities of 
the method. Finally an industrial example is treated on the Dunkirk harbour. 

1. INTRODUCTION 

Mathematical models of shallow water flows have various applications concerning the transport 
processes in harbours and estuaries: for example the thermic impact of the construction of a central 
power station on the seaside or the estimate of the effects of a seaside construction on the 
sedimentology to optimize the shape of the harbour. Let us now describe these equations. 

1.1. Shallow water equations 

The shallow water equations are derived from the three dimensional Navier-Stokes problem by 
integrating over the water depth and assuming hydrostatic pressure. They are described by the 
momentum and continuity equations. 

be the stream velocity, h the depth of water and Q = (uh) the flux per unit length; 
h, Q and u are solutions of 

Let u = (uJi= 

(1) 

(2) 

ah 
- + div Q = 0, (conservation law) 
at 

aQ 
at - + VQ*u + ghVh - KAQ = f, (momentum equations) 

where g is the gravity acceleration, K is the eddy viscosity, and f takes into account the Corolis force 
and other forces. 

The unknowns u, Q and h are defined on an open set Lt in the R2 space and for a time interval 
LO, TI. The boundary conditions can be of several types among which are: 
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Dirichtet conditions 

Q = Qo given on the boundary r or a part To of r (3) 

Friction condition 

Q * n  = 0 (impermeability condition) 1 

n being the outward unit normal vector and t a unitary vector tangential to the boundary; this 
condition (4) is similar to a wall law for the Navier-Stokes case, the quantity (aQ/an) . z  being the 
tangential friction force per unit length.' 

Wave condition 

aQ c Q  + K - - c'zn given 
an ( 5 )  

where c' = gh and z = zF + h, zF being the bottom depth. This condition simulates the propagation 
of a wave through sea boundaries and is called the incident wave condition.' 

1.2. A frictional step algorithm 

Equations (1) and (2) couple the difficulties due to the convection term and the propagation 
problem. To overcome these difficulties we use a frictional step method together with a quasi- 
implicit discretization in time. 

Let At be the time step, Q", u" and h" denote approximations of Q, u and h, respectively, at time 
nAt; the chosen time discretization is as follows: 

A 

Qf - Qf + V*(&fu") = 0, for i = 1,2 (advection step) 
At 

hn+l -h" 
+ V . Q " + ' = o  

At 

Qf" - &f ah"+' ah" 
At axi d X i  

- KAQ;" + g&-- =fi + g(5- h")--, for i = 1,2 
(7) 

where Kis a function of the spatial co-ordinates only and is usually taken equal to the mean value of h 
in time (given a priori). 

The diffusion propagation step (7) is detailed in the second paragraph. The main advantage of 
the fractional step method is to lead to symmetric systems and to decouple the difficulties. 

1.3. Solution of the advection step ( 6 )  

The auxilliary flux Qi is the solution of the discrete convection equation (6). We propose a 
method of characteristics to solve this equation. This method has been already used for the pure 
transport e q ~ a t i o n ~ . ~  and for the Navier-Stokes equation.' 

This method leads to ordinary differential equations, and their discrete solutions can be carried 
out by an explicit Runge-Kutta method of order 2 or 4. For details on this method see Reference 6. 
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In fact, the divergence of u" not being equal to zero, equation (6) can be replaced by 

au. ah 
at at 

a d i  

h- + ~ i -  + huiV*u + u*(hVui + uiVh) = 0 (8) 

and using the continuity equation and dividing by h: 

-+u-Vzi,=O, at for i =  1,2 (9) 

The solution di is constant along the characteristic lines and the auxiliary flux oi is obtained by 

Although explicit, the method of characteristics is unconditionally stable, and the time step is not 
multiplying the solution d i  by h". 

strictly limited by the Courant-Friedrichs-Levy criterion. 

1.4. Possible choices on the time discretization scheme 

In the previous paragraphs we have chosen an implicit discretization in time. Numerical 
experiments show that it seems better to use so called 8-schemes. We have studied these time 
discretization schemes from the phase error and the numerical damping points of view. 

In one dimensional space, the propagation step reduces to 

aQ ,ah a 2 Q  -+c --K-=f 
at ax a x 2  

ah aQ 
at ax -+-=o 

with some initial conditions on h and Q. 
For 8 and 8' belonging to [0,1], the associated &scheme can be written as follows: 

Q " + ~ - Q "  a 2  
-K,(8Qn+'+(1-8)Q") 

At ax 
a 

ax 
+ C2-(@hn+1 + ( 1  - 8')h") = O  

h n + ' - p  a 
+-(8Q""+(1-8)Qn)=0 

At ax 

If 8 = 8' = 1, the scheme is implicit, if 8 = 8' = 0, we obtain the explicit scheme and for 8 = 8' = 4, the 
Crank-Nicholson scheme. 

It is easy to eliminate Q in the second equation and to get the following system: 

1 a 2  a 
At ax ax - ( Q n + ' - Q " ) - K ~ ( 8 Q " + '  +(1-8)Q")+gh-(8'h"+'+(l -8')h")=O 

A spectral method is then used to study the behaviour of the phase shift and the numerical 
damping. 

The numerical tests we did show that the implicit scheme is very dissipative whereas the Crank- 
Nicholson scheme (8 = 8' = 0.5) spares the phase together with the amplitude of the wave. However 



1120 J. GOUSSEBAILE, et al. 

e - P - l  

S a b n  AA 

FIM surfac~ 

8- 0 , 5 2 5  p 0 , s  

Srtion AA 

Free surface 

A A A A  . A  

Figure 1. Propagation of a wave from left to right: 17 points of discretization per wave length 

numerical instabilities can occur. The choice 8 = 0.525 improves the phase shift and maintains a 
correct amplitude of the wave. 

The propagation of a wave has been simulated and the results are plotted in Figure 1 after a 
period. Seventeen discretization nodes per wavelength have been used. 

2. SOLUTION O F  THE PROPAGATION STEP 

For the sake of simplicity we restrict ourselves to Dirichlet boundary conditions. Other conditions 
will be treated in the Section 3. The time discretized boundary value problem can be written as 
follows: 

ah + V . Q  = ah", in R (13) 

a Q - K A Q + c 2 V h = a @ + S ,  in R (14) 

where a = l/At, c2 = g l i  and S takes into account the exterior forces and the explicit part of the 
terms; we add to (13), (14) the following boundary conditions: 

Q = Qo, given on the boundary (15) 
Although symmetric when the bottom is flat (c2 = constant), this system after discretization in 
space leads to a large linear system. In industrial tests, the number of unknowns is too large to 
directly solve the system. 

The more natural way to reduce the size of this system is to eliminate one of the unknowns h or Q 
as a function of the other one. The first possibility is to eliminate h in (14) with the help of equation 
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(13). This method leads to a non-symmetric system; in addition the two components of the flux are 
coupled in a. 

Applying the divergence operator to equation (14) and plugging equation (1 3) into it, we then get 
the equation on h only: 

(16) 

This equation is elliptic and leads to a linear symmetric system, but its solution requires the value 
of h on the boundary. On the other hand when the boundary conditions are known for h, the 
solution of (14)-(16) requires three Dirichlet problems (one for h, and one for each component of 
the flux). 

a2h - V . [ ( K a  + c2)Vh] = a2hn - KaVh" - V.(a@ + S"), in R 
= W" 

2.1. A quasi-direct decomposition method 

equation; we refer to this paper for more details. 

(16) is equivalent to a boundary condition on the solution of an elliptic problem. 

problems, if D = K a  + c2: 

This method has been already used by Glowinski and Pironneau' to solve the first biharmonic 

The method is built on the observation that the continuity equation (13) with equations (14) and 

If 2 is a given function on the boundary, let h,, Q ,  and $, be the solutions of the following elliptic 

h,lr = 3, 

aQ, - KAQ,  + c2Vh, = a@ + S", in R 
Q,=Qot  on r 

a'$, - V.(DV$,) = c2(ah, + div Q, - ah"), in R 
*Air = 0 

Under the stability condition 
At < (11 V'(c).V(c) / (Lm)-1 /2  

the continuity equation (18) is equivalent to the boundary relation 

For the proof of this result see Reference 2. 

Remark. The sufficient condition (20) shows that the time step has to be small enough when the 
gradient of the bottom step increases. This restrictive condition disappears when the bottom is flat. 

The boundary operator which associates to any function il on the boundary the quantity 
D(a$Jan) is clearly an afine operator; splitting up the linear part A and the constant part b of this 
operator, we then have 

a*, D---=AA-b 
an 

The method consists of constructing operator A and right hand side b and solving the linear 
boundary equation Ail= b, the result of which, 1, is the wanted boundary condition h(r for the 
equation (16). Operator A and right side b are constructed as follows. 
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For each function L of the boundary, solve successively the three following problems: 

Find $,EH;(R), solution of 

j/’$,n + DV$,Vn)dx = c’(ah, + div Q,)n dx, VneH$2) 

and define for each function p in H”’(T) 

and 

where (. , .) is the duality pairing between H”’(r) and H-”’(T). 

H-’/’(T). Furthermore, if the bottom is flat (i.e. h= constant), the operator A is self-adjoint. 

problems: 

Then, under the stability condition (20), the operator A is an isomorphism from H’/’((r) onto 

In a similar way, the right hand side b is obtained by solving the following set of Dirichlet 

Find h, in H;(R), such that 

(aQo4 + KVQoV4)dx = - c’Vh04dx -t (aQ” + S”)t$dx, V ~ E ( H A ( Q ) ) ~  (27) 1 Find Qo in H’(R), solution of 

s. s. s. 
Qo given on r ‘  

Find $, in HA(R), such that 

Sn(a’$,n + DV$,Vz)dx = c’(ah, - ah” + div Qo)zdx, tln~H;(R) s. 
and set 

W O  b = D - ,  o n r  
an 

It is quite obvious that, if x is the unique solution of the system 

A x = b  

then h = h i  + h, and Q = Qr+ Qo are the solutions of the weak formulation of (16) and (14). In 
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addition, the function $ defined by 

* = *i+ *o 

is the solution of (19) (via the solution of (17), (18)) and satisfies 

= O  3 
dn 

which ensures that the continuity equation is satisfied. 

2.2. Approximation by a finite element method 

In this section we shall consider only a polygonal domain R of R2, but what follows can be easily 
extended to curved boundaries using isoparametric finite elements.* We show in this section how 
to constrict the discrete linear equation to approximate the boundary equation A 1  = b. 

Let Fh be a triangulation of Q, satisfying usual uniformity assumptions. Let P k  be the space of 
polynomials of two variables of degree less or equal to k; we introduce the following spaces: 

Vik'= {Uh€%'(R); UhlTEPk, VTErh) (30) 

Equations (14) and (16) are approximated in their variational form by 

r r 
Find hh in Vik) such that 

and 

(33) 

Find Qh in (Vik'))2 such that -I 

in (33) and (34) w; and S ;  are approximations of w" and S", respectively, which belong to Vh. 

It is interesting to notice that it is possible to take here k equal to k' contrary to the flow-pressure 
formulation of the Navier-Stokes equations. This property is due to the presence of the time 
derivative in the continuity equation. In the following we shall use this remark and take k = k'. 

We define then the approximate operator Ah by 

V1,pLE&ik), ah(2, p) = ( Ah1, p) = Jn D%pdT 

= - J (a2$h,Ap -k DVII/h,dVp)dx -k J c2(Rhh,A +divQh,~)Pdx (35) 
R n 

where hh,A (resp. Qh,d and )(lh,A) is the discrete solution of (22) (resp. (23) and (24) and where the test 
functions are taken in V0.h (resp. (Vo,h)2). 

This construction leads to a matrix, which is symmetric when the bottom is flat (for details see 
Reference 2). It is quite easy to estimate the error bound between A and A,, since the operators 
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which arise in (22)-(24) are elliptic and the right hand sides of these equations are linear functions of 
hh,a and Qtt,a. 

If k = k', we get the following estimate: 

11 A - Ah ll(H1/z(r),H-l/z(l-)) < Chk (36) 

where C is a constant which depends only on the domain R, and on the coefficients (a, K.. .) of the 
problem. In a similar way, we construct the discrete right hand side b, and show that 

I( b - b, (I ~ 1 / z ( r )  < Chk (37) 

and, consequently 

The approximate solutions h, and Q h  defined by 

hh = hA,  + ' 0 , h  

Qh = Qa,, + Q o , h  

satisfy the following error estimates: 
11 - 11 l , R  chk 

II Qh - Q II i ,n Chk 

(39) 

under the regularity assumption that h (resp Q) belongs to the Sobolev space Hk(R) (resp (Hk(i2))2) .  

2.3. Estimate of computational effort-choice of A), 

The space A), should be chosen so that the computations of the operator A,, and the right hand 
side b, are easy. Therefore the basis functions wi should have a small support. It seems from 
References 9 and 10 that a good choice is as follows: 

A, is complementary of vo, in v,, and 

such that T n r = a. 
u , , E A , , * u h , T =  0 for any triangle T of F,, 

With Lagrangian finite elements, A,, is the space of those functions which vanish at every node of 
F, which does not belong to the boundary r. 

Then Nh = dim (A,) = card (&), where Z,, = {Per; P node of r,}, i.e. Nh is the number of 
boundary nodes. A good choice for the basis of A,, is the canonical basis (w,(P,) = drJ ,  where 6,, is 
the Kronecher symbol). Thus, to find the jth column of A,, it is necessary to solve the three 
Dirichlet problems (22)-(24), so that A ,  can be computed by solving 3 x N ,  Dirichlet problems. 

In addition, when A,  is known, it will be factorized by a Gauss method (we can use a Cholesky 
method when the matrix is symmetric) to get the decomposition 

A,=L,Uh (42) 
where Lh is a lower triangular matrix and u, an upper triangular matrix. 

However, these computations can be done once and for all, and at each time step, the evaluation 
of the solution h h  and Q,, requires then 3 Dirichlet problems to find the right hand side b,,, two linear 
triangular systems to compute &, and two Dirichlet problems to compute h, and Qh. 

Thus a total of five Dirichlet problems and two triangular systems are required. It is important to 
notice that the system for the flow Q is decoupled, at least for the Dirichlet conditions, into two 
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subsystems on the components of Q. The order of its matrix is then equal to the number of nodes 
for the discretization for each components of Q. 

2.4. Conjugate gradient method for solving the boundary system 

The decomposition method described in the previous sections lies on the computation of the 
matrix A,,. This matrix depends closely on the variable quantity mh,  resulting from the 
linearization of the quantity hVh; when the depth of water has some significant changes in time, it is 
necessary to re-evaluate the quantity K during the computations; this imposes in term to re- 
evaluate the boundary matrix and to factorize it again. For these reasons we have tested an 
iterative version of the method. 

When the bottom is flat, the matrix A,  is symmetric and it is natural to solvethe boundary system 
A,& = b,, by a conjugate gradient method. This algorithm only requires the products of A ,  by some 
known vectors x, and the coefficients of the matrix Ah do not need to be explicitly known. When the 
gradient of Kdoes not vanish, it is also possible to use conjugate gradient techniques, by solving the 
so called ‘normal equation’ 

‘AhAhx = ‘At 

or, if the condition number becomes too bad, we can use some biconjugate gradient techniques.” 
These iterative techniques are performed when the product of the number of iterations Ni of 

conjugate gradient and the number of time iterations A’, where kis constant is less than the number 
of boundary nodes. Otherwise, and when the number of boundary nodes is not too large, it is 
cheaper to use the direct method. Anyway for both techniques we have to evaluate the product of 
‘Ah by some known vectors y. For this purpose we have to find the adjoint system, associated with 
problems (22)-(24). 

Computation Of‘Ahy, where yeH+ ‘’’(r). After some considerations on the Lagrangian of the 
system it appears that the evaluation of ‘Ahy can be made by the following cascade of Dirichlet 
problems: . 

Find h: in V,, such that 

VU,E V i ,  (a2h;wi + DVh;Vw,)dx = 0, h; = y on r L 
s. s. Find Q: in (V;)’, solution of 

Vuie(V,0)’, (aQ;ui + KVQ;Vui)dx = - V(c’h;)w,dx 
(44) 

Find $: in V,O such that 

Voie  V; ,  (a’$:oi + DV$;Vui)dx = @’ah,* + div(c2Q;)).widx s. s. 
and set 

-DL, a** on 
an 

It is easy to check that A; is the transpose operator of A,,. Conversely it appears that it is as easy 
to compute ‘Ahx than and it requires the same volume of computations. 
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2.5. Numerical tests 

The method was tested on the well-known example of the Massachussetts bay for which many 
measurements and computation results are available (see for instance Reference 12). In this first 
experiment, emphasis has been laid on the general behaviour of the method rather than on the 
comparison with actual data. Thus the friction and Coriolis forces were not simulated. The domain 
was approximated by a 37 km x 103 km rectangle and divided into 864 triangles with 481 nodes for 
a linear approximation. On the land boundaries the two components of the flux are taken to be 
zero and on the ocean limit, the inflow was assumed to be normal to the boundary and uniform; its 
variation in time simulates a tidal motion. Only the diffusion-propagation problem has been 
solved. The bottom is supposed first to be flat and then in a second experiment a Gaussian lump is 
assumed in the middle of the domain Figures (2 and 3) show the velocity field when the inflow is 

I ........... I 

Figure 2. Velocity field. Top: after 100s, low tide. 
Bottom: after 11,000s ( 0 2 5  cycle) 

Figure 3. Velocity field. Top: after 22,000s (0.5 
cycle), high tide. Bottom: after 33,000s (0.75 cycle) 
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-\ 

I I 
Figure 4. Surface contour lines. Top: after lOOs, low 

tide. Bottom: after 11,000s (025 cycle) 
Figure 5. Surface contour lines. Top: after 23,000s 
(054 cycle), high tide. Bottom: after 33,000s (0.75 

cycle) 

maximum in both configurations of the bottom and in Figures 4 and 5 are plotted the surface 
contour lines at different times of the tide. When the bottom is not flat, the influence of the lump on 
the contour lines and the speeding down of the flux above the lump can be observed. 

We also solved the boundary system with a conjugate gradient method when the bottom was 
flat. The number of nodes on the boundary was equal to 96. The number of conjugate gradient 
iterations was varied between 4 and 9, leading to the same solution as in the direct resolution. 

3. OTHER BOUNDARY CONDITIONS 

The Dirichlet (or the Neumann) boundary conditions have the advantage of decoupling the 
problem on the flow into two problems for each component of Q. However, these boundary 
conditions do not take into account all physical phenomena. In this section we examine some other 
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boundary conditions for which the decomposition method of section 2 can be applied with some 
changes. 

We shall divide the boundary into two parts: T = TI 0 I-,. On the ocean boundary (part rl of 
the boundary), we shall apply an incident wave condition and along the coast (part r,) we impose 
an impermeability condition coupled with a friction condition. 

3.1. Incident wave condition 

The reader can refer to Reference 2 for a more complete justification. This condition takes into 
account waves coming into and going out of the domain R. The normal waves coming out of the 
domain have to cross the sea boundary without reflection; in addition, it may be possible to 
generate a wave coming into the domain in a given direction v. It can then be written as follows: 

aQ -c2hn + K-+ cQ = F 
dn 

with 

(45) 

where n is the exterior normal at the boundary rl, t the  associate tangential vector, A and w denote 
the amplitude and the pulsation of the wave. 

For sake of simplicity we suppose that Dirichlet conditions are given along the coastal boundary 

A variational formulation of the propagation problem (1 3), (14) with the condition (45) can be 

Let Hr2= (VE(H'(R))';V = 0 on T,}; find h in H'(R), Q in H r ,  such that 

l-2. 

written as follows: 

= - JRc2Vh.qdx + 
(47) 

Using then a Green formula we get 

Vuie Hrz, (aQui + KVQVq) dx + cQwi dT I L, (48) 
(hV(czwi) + S"oi) dx + 

= I l r  I 

Fai dT 

In this formulation the two components of Q are decoupled and the decomposition method for 
the solution of h at the nodes of Tz can be applied as in Section 2. 

3.2. Wall condition on the flow 

This condition coming from the physics expresses on the one hand the impermeability of the 
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coast: 

Q-n = 0 (49) 
and, on the other hand, simulates friction along the coasts: 

(50) 
aQ 
an 

1Q. t+  K - - t = g ,  given on T2 

The coefficient 1 may depend on the spatial co-ordinates; when 1 varies from 0 to infinity, the 
condition varies from a free slip to a no slip condition. 

The main difficulty lies in the fact that the two components of Q are coupled on the boundary, 
and the solution of (14) with the boundary conditions (49) and (50) leads to a system of size 
2N x 2N,  if N is the number of nodes for each component. We show in this section how this 
difficulty can be overcome. 

We set 

V0 = e n  = 0 on rz, 4 = 0 on rl >, (51) 

and, if Dirichlet conditions are fixed on r,, a variational formulation may be written as: 

Find Q in Vo,  solution of 

In this form, it is easy to show that problem (52) has one and only one solution in Vo. 
As a direct discretization of V o  is difficult, the more natural idea is then to find decoupled 

conditions for which we get the same solutions as the original problem. The most simple way is to 
use Dirichlet conditions. 

Let yVo = {&(H1'2(r))2; 4 . n  = 0 on r2, q!~ = 0 on r,} 
n(H1/2(r))2 -, yv0 ] 
v +nv = v - vmnn 

Let qE(H"2(r))2 be given and q* = nq, we solve: 
Find Q in (H1(12))2 satisfying: 

Ia(aQwi + KVQVoi) dx = 

Q = q* on r2 
It is then equivalent to solve (52)  and to minimize the functional f defined by 

r r 

(53) 

(54) 

The functional f is symmetric and coercive; it can then be minimized by a conjugate gradient 
method. 

When a discretization in space is done, and for polygonal domains we have to define an 
approximation nh of n at each boundary node, we define nh as the solution of the following linear 
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0.0 0.0 
Figure 6 

variational problem: 

12,8 km 

(56) 

whose matrix is symmetric positive definite; the approximate operator R~ is defined by: 

nh:y v h  V i  

Ph n#h = k - Phenhnh 
This method is easy to implement and the number of unknowns q$ is equal to Nh, the number of 

nodes on the part Tz of the boundary. The iterative process to find q$ has to be inserted inside the 
iterative algorithm for the boundary value of the water depth 1. 

We have tested this method for the propagation problem (13), (14) with the boundary conditions 
(49), (50), where R was a rectangular domain with two jetties representing a harbour during a tidal 
period. The triangulation of the domain R is plotted in Figure 6.  There are 505 nodes and 892 
triangles. 

The boundary conditions are of Dirichlet type on the sea boundary (horizontal lower and 
vertical boundaries) and simulate a tidal current: 

Q , = O  

where T, is the period of the tide, T, = 43,200s. 
The boundary conditions on the seashore follow the ‘wall law’ described in this section: 

Q-n = 0 

with A = 10-4K. 
In Figure 7 are plotted the surface contour lines during a tidal period at mid tide, high and low 
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Figure 7. Surface contour lines: (a) after 10,800s (0.25 cycle); 
(b) after 21,600s (0.5 cycle), high tide; (c) after 32,400s (0.75 

cycle); (d) after 43,200s (1 cycle). low tide 

Figure 8. Velocity field: (a) after 10,800s (025 cycle); (b) after 
21,600s (0.5 cycle), high tide; (c) after 32,400s (0.75 cycle); 

(d) after 43,200s (1 cycle), low tide 

tide; in Figures 8 and 9 the velocity field is plotted for the same time step in the whole domain and 
at the entrance of the harbour. 

Both boundary problems have been solved simultaneously by the iterative conjugate gradient 
method, described in Section 2.4 and in this section. Initial guesses for these algorithms play an 
important role: they were taken equal to the solution of the corresponding problems at the 
previous time step. 

For the boundary problem on the depth of water 1 = h,,, the number of conjugate gradient 
iterations was varied between 2 and 7 to reach the error 

less than &h = w5. 
For the minimization problem (55 )  the number of conjugate gradient iterations was varied 

between 12 (at the beginning of the computations) and 4 (when initialized with the solution at the 
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Figure 9. Velocity Field at the entrance of the harbour: (a) after 10,800s (0.25 cycle); (b) after 21,600s (0.5 cycle), high tide; 
(c) after 32,400s (0.75 cycle); (d) after 43,200s (1 cycle), low tide 

previous time step) to reach the relative error 

less than lo-' 

4. INDUSTRIAL APPLICATION 

4.1. The outer ..Jrbour of Dun.,;rk 

We present here a computation of the tidal currents in the neighbourhood of the outer harbour 
of Dunkirk. For this case, a physical model has been studied and we can compare then the physical 
observations with our computational results. The computations have been made at E.D.F. 
(Chatou). 

The finite element grid is made of 892 triangular elements. Both the water level h and the fluxes Q 
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Figure 10. The outer harbour of Dunkirk-topography of the bottom 

Numerical model Phy.ic.1 rodel 

Figure 11 
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have been approximated by quadratic piecewise functions. There are 1909 degrees of freedom for 
each unknown function with 232 boundary nodes, leading to a global system of 5727 unknown. 

The right hand sides of the dynamic equations include bottom friction forces and the topography 
of the bottom takes into account a navigation channel at the entrance of the harbour, shown in 
Figure 10. The slopes attain 10 per cent and this is a severe condition for the shallow water 
equations. 

The boundary conditions are of Dirichlet types on the fluxes: they have been interpolated from 
results of a previous computation made on a larger domain with a coarse mesh. The time step is 60s 
leading to a Courant number from 1 to 5. The Chezy coefficient is equal to 60 Jm/s. 

The computations have been carried out during more than a tidal period and are compared in 
Figures 11 and 12 with the data obtained by photography of floats on the physical model. 

In Figure 11, the plotted currents show how the harbour fills in with the flood and a vortex 
develops behind the west jetty in both models. 

Later on (Figure 12) the vortex size increases and occupies the whole entrance of the harbour. 
The global error during one tide cycle on the mass conservation attains 3 per cent of the tidal 

range. The probable cause is the important variation of the bottom, since this error was less than 
1 per cent in a first schematic run where the bottom was flat. 

4.2. The channel 

The purpose of such a computation is to obtain storm surges induced by meteorological 
conditions. For this application, the pressure field upon the sea surface and the stresses due to 
friction of wind have been introduced in the model. Because of the horizontal extension of the 
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domain Coriolis effects cannot be neglected. They have been implemented through an explicit 
formulation. 

I I I I I I 1 I I I I # '  
-0.7 0.3 1.3 1.3 3.3 4.3 5.3 6.3 7.3 0.3 9.3 10.3 11.3 12.3 

Figure 14. Model of the channel-velocity field at time t = 8.104s 
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In a first step, in order to simplify the problem, the computation of storm surges is supposed 
decoupled from tidal effects (i.e. one computes only variations of sea-surface elevation and of 
currents). In these conditions, the boundary conditions are: 

(i) Qlr, = 0 along the coasts, 
(ii) Incident wave condition (see Section 3.1) without incoming wave on the sea sides. 
Figures 13 and 14 present the results obtained near steady state, by blowing a constant West 

wind (20 m/s) on a initial rest state. For this computation the Courant number varies from 1 to 3 in 
the shallow part of the domain. 

In Figure 13 are plotted the isoelevation lines of the sea surface, and the velocity field in the 
neighbourhood of France is presented in Figure 14. In that application non-zero velocities are 
obtained at steady state because of the non-uniform bathymetry of the problem. 

At present real simulation of storm surges with observed pressure and wind fields are being 
studied. 

5. CONCLUSION 

We have discussed in this paper a new method for solving the diffusion-propagation step of the 
shallow water equations, where we have added some physical boundary conditions: incident wave 
condition, impermeability and friction constraints. For each type of boundary condition we have 
shown that the global system can be decoupled into a problem for the water elevation and a 
problem for the fluxes. In addition, for this last problem the two components of the fluxes can be 
treated as independent unknowns. 

These methods are well adapted to approximations by finite element methods which allow more 
complicated geometry than with finite difference approximations together with local refinement of 
the mesh. With this work (decoupling and finite element) industrial simulations are possible. 
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